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Introduction — Maps

q 850 K (∼32 km, 10 hPa) maps of MLS N2O (top row) and H2O (bottom row) show a previously
unreported phenomenon discovered during routine inspection of MLS data.

q The 2005 Arctic vortex broke up in a “major final warming”.
ï A warming leading directly to the final warming with no significant intervening recovery.

q Many tongues of low latitude air were drawn to high latitudes.

q Starting on the 24th March, one of these formed a tight, closed anticyclone which persisted
through to mid-summer.

q This was advected westwards round the pole with little dissipation.

q This is analogous to “frozen-in” vortex remnants, such as reported by e.g., Orsolini [2001].

q Corresponding PV feature (overlaid white contours) disappears by early June.
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Signs of the FrIAC in 850 K Ozone data

q High ozone
air drawn up
from lower
latitudes is
confined in
anticyclone.

q Ozone quickly relaxes photochemically to values typical of high latitudes.

q Ozone is the only trace gas with many previous global profile measurements
covering the spring/summer period.

q However, features of this sort would not be detected in ozone.

q Examination of 1992 and 1993 PV fields (when CLAES data were available dur-
ing some parts of the relevant period) show no suggestion that there should
have been a FrIAC in those years, and CLAES data show no signs of one.
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The temporal evolution of the FrIAC (78◦N)

q Feature persists
through July.

q Vertical extent
650 K – 1200 K.

q Advected by
summer easterly
winds.

q The weak shears
contribute to its
longevity.

q Anticyclone
stalls & dissipates
only when winds
weaken in early
August.
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A 3D view of the FrIAC

q Deviation of N2O from NH mean profile (11 March to 18 July 2005).
ï Cyan volume is anticyclone, N2O anomaly >15 ppbv.

ï Magenta volume is vortex remnant, N2O anomaly < −90 ppbv.

q April/May shows FrIAC well established with vortex remnant evident.

q Later frames show the moderate shearing and dissipation of the FrIAC.
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Tracer–tracer correlation studies

q The FrIAC appears clearly in the scatter plots as high latitude (red) air with higher N2O, lower
H2O characteristic of lower latitudes.

q Increasing amount of this as FrIAC forms when low latitude air is drawn into polar regions.

q Early plots show changes in slope related to polar vortex transport barrier.

q As this is “mixed out” in summer, high-latitude air spreads more along correlation curve.
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SLIMCAT model simulations
q 850 K H2O (left) and N2O

(right, below) SLIMCAT
fields.

q Model is run near-real
time, driven with Met
Office analyses and
sampled at the MLS profile
locations.

q The model captures the FrIAC formation in
a realistic manner.

q However, the N2O and H2O dynamic range
is smaller than seen by MLS.

q Also, model shows the feature disappearing
by early June (MLS shows early August).

q Maps of SLIMCAT data show unrealistic
‘shredding’ of feature.
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High resolution trajectory studies
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q 16-day reverse trajectory calculations initialized with MLS N2O.

q The feature reproduced well in the early stages, but by end of May it shreds unrealistically.

q Similar behavior is seen in the SLIMCAT calculations shown earlier.

q Meteorological analyses differ in detail, but all fail to preserve the FrIAC.

q Suggests unrealistic dispersion from all analyzed winds in summer – provides a stringent test
of high-latitude summertime winds.
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The FrIAC in PV and historical perspective
q 850 K PV maps from different analyses (left) show

substantial differences.

q Lower resolution Met Office fields suggest FrIAC
dissipates sooner.

q PV fields only way to identify FrIAC in previous years,
when we have no global daily long-lived trace gas
data – difficult to assess quality of PV maps.

q Survey of GEOS-4, ERA-40 and MetO PV fields for
previous years suggests FrIAC may have occurred
several times.

q 1982, 1994, 2003 (right) are the strongest possibil-
ities; 1997 and 2002 also suggest sustained anticy-
clone, as well as several years in earlier (pre-80s)
ERA-40 data.
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Summary and conclusions

q Aura MLS tracer observations have provided the first observations of a “frozen-
in” region of low-latitude air in the northern polar regions following the Arctic
vortex break up, extending from 650 K – 1200 K.

q It was advected in the easterly winds, staying ‘upright’, and persisted from 24th
March to mid August 2005.

q Its signature in ozone has a far shorter lifetime due to chemical effects.

q PV fields, modeling studies and trajectory calculations capture the formation
of the feature well, but fail to reproduce its stability and longevity.

q Good modeling of this feature could be a useful stringent test of summer
stratospheric wind fields.

q We’ll investigate whether previous FrIACs were sampled by other instruments.

q It is unlikely that a FrIAC could be reliably identified without global daily long-
lived trace gas data such as that provided by EOS MLS.
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